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Asymptotic formulae are established for the dynamics of the free surface of a thin film, and the law of 

motion of the boundary determined, for a layer of non-linearly viscous liquid spreading over a 

horizontal base with sliding. Computational results are presented. 

1. STATEMENT OF THE PROBLEM 

The dynamics of flow of non-linearly viscous liquid films obeying a power constitutive law are 
described in the one-dimensional approximation by the following equation [l, 21 

af/at=aqE/ax, DO, OC~CX, (1.1) 

where 1(x, t) is the film thickness, and $ is the flux of the liquid 

(1.2) 

where the constant )2 is determined by the constitutive law, and E and m are determined by the 
law governing the sliding of the film relative to the base, which is assumed here to be flat. 

Note that in applications, after non-dimensionalization, it usually turns out that E c 1 [l]. We 
shall here assume this to be the case. 

Equation (1.1) will be considered with the boundary conditions 

x = 0 : ar i ax = 0 (consequently, qE = 0) (1.3) 

x = X,,(I) (point of the front) 1= 0, qp = 0 (1.4) 

t=O:l=M6(x) (1.5) 

where A4 is the mass of liquid per unit width of the film, and 6(x) is the delta-function. (The 
boundary conditions (1.3) and (1.4) ensure that the solution 1 can be extended as an even 
function into the domain x < 0, preserving smoothness at x = 0.) 
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The mixed problem (l.l)-(1.5) describes the spreading of a non-Newtonian liquid concen- 
trated at the starting time along the axis x= 0. The absence of sinks at n=O and X=X&) 
guarantees conse~ation of the mass of the spreading film, so that 

x0(t) 
1 l(x,t)fix I= +A4 
0 

(1.6) 

Together with (l.l), we shall also consider the unperturbed equation 

(1.7) 

where the flux q” is obtained from (1.2) by putting E = 0. 
It has been shown [2] that the unperturbed equation (1.7) is invariant under the group of 

dilatations with infinitesimal operator 

x, =t(l+h(n+l))&+(Z+I)x$+l~ U-8) 

and moreover only a self-similar solution of Eq. (1.7), which is invariant under the group with 
operator (1.8) with h = -3, satisfies conditions (l-3)-(1.5) or, consequently, the law of conserva- 
tion of mass. This solution of Eq. (1.7) may be determined in closed form [2] 

l(x,t) = D”P({b+“” -,y+yp, O<~<tjo (1.9) 
5 = XP, zln = (CPy )f’, x0(r) = cota 

The constant 5, is determined from the mass-conservation condition (1.6). 
However, the introduction of sliding violates the symmetry of (1.8). The perturbed equation 

(1.1) is not invariant under the group of dilatations with operator X,; as shown in [2], it admits 
of a dilatation group with the operator 

X=(m-2n-1)t at d+(2m-2n-1)x $+(m-n)$ (1.10) 

Unfortunately, a solution of Eq. (1.1) which is invariant under this group cannot satisfy the 
conservation law (1.6); hence it cannot be a solution of the problem of free spreading of the 
film as represented by (l.l)-(1.5). 

Below we shall develop an algorithm for solving problem (l,l)-(1.5), based on constructing 
an asymptotic expansion (E < 1) of a solution, invariant under the group of dilatations admis- 
sible by Eq. (1.1) and transforming not only f, x and I but also the parameter E. Such groups 
were used in [3j to investigate the non-linear wave equation. 

2. CONSTRUCTION OF THE TRANSFORMATION GROUP 

The infinitesimal operator of the dilatation group operating on the variables t, x, 1 and the 
parameter E and leaving Eq. (1.1) invariant will be sought in the form (generalization of (1.8) 
for x=-3)) 

a 
Y=-(3n+2)c$-x~+l-+se$ ai 
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where the constant s is yet to be determined. The operator Y generates a dilatation group 

The presumed invariance of Eq. (1.1) under the group (2.1) implies that s = 3(n - m) + 3 

a 
Y =-(3n+2)r,- X$+1-&+(3(M)+I)e$ (2.2) 

after which we obtain three independent group invariants 

I, = 5 = .p, 1, = rl = ET=(1+3(n-m)), l3 = It= 

Using the standard invariant form of the solution of Eq. (1.1) as Z3 = w(k, n), we obtain 

I= t-“w(L q) (2.3) 

Assuming that 1 is a monotone decreasing function of x and substituting (2.3) into (l.l), we 
obtain an equation for the unknown function w 

a 
NW + swg - (I+ 3(n - m))rlyll I= - 

vn+* (-we 1” 
26 L n+l 

+ wm+‘GWg)m 
I 

(2.4) 

The law of motion of the boundary X, = q(t) in the new variables 5, n may be written in the 
form 5, = g(n) where g(q) is a new unknown function, to be determined together with w. When 
solving boundary-value problems it is more convenient to work with fixed boundaries. We 
shall therefore change from 5 to a new variable: z = c/g(q). Transforming Eq. (2.4) to the vari- 
ables z, q and keeping the old notation ~(z, n) for the unknown function, we deduce the 
following equation from (2.4) 

(2.5) 

The law of conservation of mass (1.6) implies the following relationship for the function 
V(G 11) 

while the boundary conditions (1.3) and (1.4) become 

Here and in (2.5) the flux (I is given by the following formula 

q = wn+*Gwz Y + rl vm+?-W, 1” 
(n + 2)g”+’ g 

m+l 

(2.7) 

(2.8) 
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3. SOLUTION OF THE PROBLEM 

A solution ~(z, r() of the boundary-value problem (ZS), (2.7) will be sought as a series in 
powers of the invariant 7; the unknown function g(q) will also be sought in this form. 
Confining ourselves to terms of order less than O($), we write 

with unknown functions u(z) and u(z) and constant (independent of z) coefficients a and b. 
Substituting (3.1) into Eq. (2.5), after first multiplying it by g”+‘(Q, and comparing the 
coefficients of lt”, q in the resulting equality, we obtain equations for the unknown functions 2) 
and u 

where 

cm”+‘(u+zdWdz)=dqo/dz 

(r[cI”+‘(zu)z +(n + l)aV(zu), - (l+ 3(n - m))@“*‘u 

qo =I) “+*(-II*)” l(n+2) 

(3.2) 

(3.3) 

(3.4) 

q1 =Um+f(-~UE)man-m +[(n+2)u “+‘u(-_uz)” - ng+* (-u,)“-‘uz Jl(n+2) (3.5) 

Substituting (3.1) into the boundary conditions (2.7) and (2.X) and expanding in powers of IJ, 
we get the following conditions 

Z=o:O, =o; z=I:u=O, q()=o (3.6) 

for Eq. (3.2) and 

z=o:u, =o; z=l:u=O, q] =o 

for Eq. (3.3). 
Finally, the law of conservation of mass (2.6) implies 

du(2)dz=$M, j(u+;u)dz=o 
0 

(3.7) 

(3.8) 

the second equality here being a direct result of (3.3) and the boundary conditions (3.6) and 
(3.7)-this may be verified by integrating with respect to z from 0 to 1 on both sides of 
Eq. (3.3). 

Equation (3.2) is a non-linear equation in u(z). Its order may be reduced and the unique 
solution that satisfies the boundary conditions (3.6) determined in closed form 

U(Z)=CnaY(l--‘+l’n)P, c, =[y-‘((n+2)cr)““]a (3.9) 

The unknown constant a is found from the first condition of (3.8), which, after substituting 
(3.9), becomes an equation for a. Finally, we obtain 

(3.10) 
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(B is the Euler beta-function). 
We have thus determined the zero-order terms in the expansions (3.1). We will now deter- 

mine the unknown function and the coefficient b. 
Equation (3.3) is a second-order linear inhomogeneous differential equation in u, with 

coefficients expressed in terms of the function u and its derivatives of order up to two inclusive 
and the constants a and b. The other coefficients of the expansion of ~(z, 11) in powers of q are 
solutions of second-order linear equations, as is the case for u. We introduce a new unknown 
function w = u + ba-‘u, thus giving Eq. (3.3) the form 

a(1 + 3(n - m))u”+‘w = $(q, - azUu”+’ - a(4n - 3m + 2)a”btu) (3.11) 

Substituting 4’ as given by (3.5) into the right-hand side of (3.11), replacing u by w - ba%, 
and using (3.2) and (3.4), we get an equation for w 

-a(l+3(n-m))a”+‘w=d u”+‘(-u~)~w-~~“+~~w--~_u~+*(-~~)~-’w, 
d.z 1 n+2 1 +f 

f = i [IJ~+I (-uuz )” anem - 3a(2n - m + l)a”bzul (3.12) 

Conditions (3.6) and (3.7) imply boundary conditions 

z=o:w, =o; z=l:w=O (3.13) 

for the function w. The coefficients of Eq. (3.12) can be calculated using (3.9). The result is 

u”+*(-~~)” = (n+ 2)aC,u2Yz(l - ~‘+““)a 

Um+‘(+))m =(CnuY)*m+‘ymzm’n(l_z’+“n)6, g=z 

It follows from these formulae that Eq. (3.12) may be rewritten as 

(3(n-*)+1)w=~[n~~‘z”‘“(1-2,‘+““)w,-(n+1)zw]-~ 
aa 

where the coefficients have only an algebraic singularity (a branch-point) at 
and can be expanded in the neighbourhood of z = 1 as power series of the form 

We will now need higher-order terms of the expansions 

(3.14) 

(3.15) 

z=O and z=l 

(3.16) 

(3.17) 
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The general solution of the inhomogeneous equation (3.16) is 

w=Aw,+Bw,+w, (3.18) 

where w, 2 are any of two independent solutions of the homogeneous equation 

d 
(3(n-m)+I)w =$lYT z ’ ‘-““(1 -z’+i’n)W, -(n + l)zw] (3.19) 

A and B are arbitrary constants, and w3 is any particular solution of Eq. (3.15). 
By well-known results of the analytic theory of differential equations, the solutions wl, w2 

and wg may also be sought as expansions in powers of z-l, similar to the expansions (3.16) for 
the coefficients of the equation. Defining 

substituting this expansion 
characteristic equation in z 

w=(l-z)‘(l+b,(l-z)+...) (3.20) 

into (3.19) and using the first relationship of (3.17) we obtain the 

(2n+l)z2 +(n+l)z=O 

whence we obtain two independent solutions of Eq. (3.19), which admit of the following power 
series expansions in the neighbourhood of z = 1 

w, =(l-z)-“(l+b,,(l-z)+...), w2 =l+b,,(l-z)+... (3.21) 

A particular solution of the inhomogeneous equation (3.15) may also be sought as a power 
series 

w3 =(1-z$(c, +c,(l-z)+...) (3.22) 

It follows from (3.17) that the leading term in the expansion of the free term of Eq. (3.15) is 

( 1 
8 

6a-~ym n+l C;m+la2y(m-n)(l _ z)8-1 

n 
(3.23) 

Substituting the expansion (3.22) into Eq. (3.15), we obtain the exponent < and the coef- 
ficient c,; the other coefficients c,; i a 2, will not be needed. Using (3.17) and (3.23), we obtain 

(3.24) 

Since C,>O, it follows from (3.21) and (3.22) that the boundary condition (3.13) for the 
solution w of Eq. (3.15) at z = 1 determined by (3.18) will be satisfied only if we put A = B = 0 
in (3.18). 

We shall now verify that the function II = w3 - ba-‘u satisfies the second boundary condition 
at z = 1 that is, the condition q1 = 0 in (3.7). Noting that II = 0 at .z = 1, while n > m, we verify 
with the help of (3.14) that the first two terms in expression (3.5) for q1 vanish at z = 1. It 
remains to check that the last term in (3.5), i.e. z)“+*(-v~)“-*~L~, also vanishes at z = 1. We have 

u”+~(-Q”-‘u~ = ~“+2(-~z)n-‘(~3)Z + ba-'un+2(-uz)" (3.25) 

The second term on the right-hand side of (3.25) vanishes at z=l by (3.14), while the first 
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may be expanded in the neighbourhood of z = 1 as a series in powers of 1- z whose leading 
term is equal to d(l- z)< (where d is an unimportant constant); this is readily verified using 
(3.14) (3.17) and (3.22). Since [ > 0, the first term on the right-hand side of (3.25) also vanishes 
at z=l. 

The solution w=w, of Eq. (3.18) (and together with it the function u) depends on the 
coefficient b in (3.1). This coefficient is uniquely defined by the condition w, = 0 at z = 0. 

We now observe that as t + 0 the point x,,(t) = tag(~) on the front tends to zero, i.e. the 
support of the solution we have constructed contracts to the origin. Hence it follows that our 
solution, which satisfies the law of conservation (1.6), will automatically satisfy the initial 
condition (1.5) also. 

We will now indicate a simple and convenient way of calculating the coefficient b in the expansion (3.1) 
of g(n) (it is this coefficient, together with the parameter a, that defines the effect of sliding apart from 
O($)). To that end, we note, first, that j(z), the free term of Eq. (3X), may be written in the form 

f(z)=fl(z)+bf2(z) 

h=a “-m(~m+‘(-~Z)m)z, f2 =-3a"a(2n-m+I)(m), 

The functions f,,z and the coefficients of the homogeneous equation (3.19) are independent of b. The 

linearity of Eq. (3.15) implies that its solution w) may be written 

w3 =W31(Z)+bw32(Z) (3.26) 

where wg, and wz are solutions of Eq. (3.15) with f(z) replaced by fr(z) and f2(z), respectively. These 
solutions no longer depend on b, and it follows from (3.26) and the boundary condition (w,), = 0 at z = 0 
that 

b=-(w31)z l(W32Jz (3.27) 

Since the leading term of the expansion of fi(z) in powers of 1-z is the same as that of f(z), the 
leading terms in the expansions of wg and wgl are also the same, i.e. 

W3] -C,(l-z)C, z+l (3.28) 

(6 and c1 are determined by (3.24)). The derivative is 

(w3,Jz --Cc,(l-ZF’, z+l (3.29) 

The leading term of the expansion of f, in powers of l-z may be found using the expression from 
(3.17) for U; it is 

f2 -c2(1-z)-r, c2 =3(y+G)y-P((n+2)a)P’n.-P 

We can now determine the leading terms of the expansions of w3* and its derivative (w=)~ in powers of 

1-Z 

w32 --‘(1-Z)‘. cw32)z 
n 

- --&l - z)P 

(3.30) 
c=-3(2n-m+l)PY((n+2)a)P’n.-P 

The asymptotic expansions (3.28)-(3.30) enable one approximately to determine the initial data of the 
Cauchy problem at a point z = l-E (where E is sufficiently small), so that numerical methods can be used 
to find the solutions wgl and 10~ and their derivatives at z = 0 to any desired accuracy, and then, using 
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(3.27) to determine the coefficients b. 
The non-monotone nature of the function b=b(m) (the curve has a single minimum) is easily 

explained if one considers that in the sliding model used here (which is indeed commonly adopted today, 
see [4]) the non-dimensional velocity of sliding is equal to u, = ho’” (where cr = / I a/&x I is the shear 

stress). The magnitude of Q is clearly significant in the boundary zone, near a point of the front x =x,(t), 

since a/ax+- as x+x,(t), and conversely a/ax+0 as x-0. Consequently, increasing m sharply 
increases the velocity of sliding in the boundary zone, implying a higher coefficient b. Reducing m , on the 

one hand, reduces the velocity of sliding in the boundary zone but, on the other, it extends the region in 

which sliding is significant. When the second factor predominates over the first, the parameter b again 
begins to increase. 

In conclusion, we note a simple power dependence of b on a, i.e. on the mass of the film and the 
parameter n of the constitutive law. Indeed, it follows from (3.9) and (3.14) that 

2n2 +2n+m+l 2n2 +2n+l 
cp= 

2n+l 
9 x= 

2n+l 

Obviously, an analogous relationship links the solutions wgl, wp and their derivatives with respect to 

z, on the one hand, and the parameter a. Hence, by (3.27) we obtain 

b(a) = b( l)u”“tm+‘) 
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